A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem

نویسندگان

چکیده

In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform backward Euler used temporal Furthermore, preconditioning approach is also to ensure uniform convergence. Numerical experiments show that method first-order accuracy in time almost space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high order HODIE finite difference scheme for 1D parabolic singularly perturbed reaction-diffusion problems

This paper deals with the numerical approximation of the solution of 1D parabolic singularly perturbed problems of reaction–diffusion type. The numerical method combines the standard implicit Euler method on a uniform mesh to discretize in time and a HODIE compact fourth order finite difference scheme to discretize in space, which is defined on a priori special meshes condensing the grid points...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

Finite-difference Method for Parameterized Singularly Perturbed Problem

ε > 0 is a small parameter and {u(x),λ} is a solution. For ε 1, the function u(x) has a boundary layer of thickness O(ε) near x = 0. Under the above conditions, there exists a unique solution to problem (1.1), (1.2) (see [7, 12]). An overview of some existence and uniqueness results and applications of parameterized equations may be obtained, for example, in [6, 7, 8, 9, 12, 13, 15, 16]. In [7,...

متن کامل

Finite difference scheme for singularly perturbed convection- diffusion problem with two small parameters

In this article a numerical method involving classical finite difference scheme on non-uniform grid is constructed for a singularly perturbed convection-diffusion boundary value problem with two small parameters affecting the convection and diffusion terms. The scheme has been analyzed for uniform convergence with respect to both singular perturbation parameters. To support the theoretical erro...

متن کامل

Uniformly Convergent Second Order Completely Fitted Finite Difference Scheme for Two-Parameters Singularly Perturbed Two Point Boundary Value Problem

© journal de afrikana www.jdeafrikana.com 233 Original Research Article ISSN; 2411-1376 Title: Uniformly Convergent Second Order Completely Fitted Finite Difference Scheme for Two-Parameters Singularly Perturbed Two Point Boundary Value Problem K. Phaneendra*, G. Mahesh Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad, India _____________________...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2021

ISSN: ['1026-7077', '1563-5147', '1024-123X']

DOI: https://doi.org/10.1155/2021/9941692